Please check the examination deta	ails below	before ente	ring your candidate information
Candidate surname			Other names
Pearson Edexcel International Advanced Level	Centre	e Number	Candidate Number
Wednesday 2	23 J	anu	ary 2019
Afternoon (Time: 1 hour 30 minu	ites)	Paper Re	eference WST02/01
Statistics S2 Advanced/Advanced S	ubsic	diary	
You must have: Mathematical Formulae and Stat	tistical	Γables (ΒΙι	Total Marks

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
 Coloured pencils and highlighter pens must not be used.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Values from the statistical tables should be quoted in full. When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information

- The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
 use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

The bus has seats for 48 people.

Each week the bus company sells tickets to exactly 50 people for the journey.

The random variable X represents the number of these people who do not turn up for the journey.

(a) State one assumption required to model X as a binomial distribution.

(1)

For this week's journey find,

(b) (i) the probability that all 50 people turn up for the journey,

(ii)
$$P(X = 1)$$
 (3)

The bus company receives £20 for each ticket sold and all 50 tickets are sold. It must pay out £60 to each person who buys a ticket and turns up for the journey but does not have a seat.

(c) Find the bus company's expected total earnings per journey.

(3)

(9) Each person hrns up	2 x £60 = £120
(9) Each person hrns up independently from others.	
,	1000-170 = £880.
h) XNB (50,0.05) -> don't hrn	
	880 x0.0769 = £62.67.
p(x=0) (50 (0.05)0(0.95)50	
(0)	Probability that one person doesn't
= 0.6769	Probability that one person doesn't
P(X=1) (50) (0.05) (0.95) 49	
= 0-202	1000 - 60 = £940
(e) Tickely sold -> 50x £20 = £1000	940 X0.702 =189.88.
= £ 100 D	Probabity that 2 or more people
	don't him up for the journey
Prohability that all 50 people	1-0.0769 -0.202
Probability that all 50 people turn up for the journey =0.0769	= 0.7211.

Question 1 continued	blank
1000 × 0.7211 = 721.	
67-67 +189.88 +721.41	
= 978.65	
= £979	
.,,	
	Q1
	(Total 7 marks)
,	

Leave

2. During morning hours, employees arrive randomly at an office drinks dispenser at a rate of 2 every 10 minutes.

The number of employees arriving at the drinks dispenser is assumed to follow a Poisson distribution.

(a) Find the probability that fewer than 5 employees arrive at the drinks dispenser during a 10-minute period one morning. (2)

During a 30-minute period one morning, the probability that n employees arrive at the drinks dispenser is the same as the probability that n + 1 employees arrive at the drinks dispenser.

(b) Find the value of n (3)

During a 45-minute period one morning, the probability that between c and 12, inclusive, employees arrive at the drinks dispenser is 0.8546

- (c) Find the value of c (3)
- (d) Find the probability that exactly 2 employees arrive at the drinks dispenser in exactly 4 of the 6 non-overlapping 10-minute intervals between 10 am and 11 am one morning.

 (4)

Question 2 continued	
() 2 → 10mins x → 45mins	
gc = 9	
X ~ Po (9)	
P(C EX <12)=0.8546	
0.8758-p(x = C-1)=0.8546	
b(xe(-1)=0.0515,	
C-1=3 C=4	
(d) P(X=2) KnPo(2).	
$e^{-2} \times 2^{\frac{1}{2}} = 0.27067$	
× ~ B (6,0.7707)	
P(x=4) (6)(0.2707)4(0.7293)	
= 0.043	

Leave blank Figure 1 shows an accurate graph of the cumulative distribution function, F(x), for the continuous random variable X

Figure 1

(a) Find P(3
$$< X < 7$$
)

(2)

The probability density function of X is given by

$$f(x) = \begin{cases} a & 2 \le x < 4 \\ b & 4 \le x < 6 \\ c & 6 \le x \le 8 \\ 0 & \text{otherwise} \end{cases}$$

where a, b and c are constants.

(b) Find the value of a, the value of b and the value of c

(3)

(c) Find
$$E(X)$$

(3)'

(9) f(7) - F(3)	(6, 8, 4) (8, 1)
0.7-6.2 =0.5	1-0.4 = 0.6 = 0.3
(b) (2,0) (4,0.4)	$\frac{8-6}{}$ = 0.6 = 0.3
$\frac{0.4-0}{4-2} = \frac{0.4}{2} = 0.2$	·· 9:0.2 b=0 (=0·3
4-2	(e) $E(X) = \int_{2}^{4} 0.2 n(n) dn + \int_{4}^{6} 0 n dn$
(4.0.4) (6.0.4)	52 8

 $+ \int_{6}^{8} 0.3 (n) dn$ $= \left[0.2n^{2}\right]_{2}^{4} + \left[0.3n^{2}\right]_{2}^{6}$ $= \frac{8}{5} - \frac{2}{5} + \frac{48}{5} - 5$

4. At a shop, past figures show that 35% of customers pay by credit card. Following the shop's decision to no longer charge a fee for using a credit card, a random sample of 20 customers is taken and 11 are found to have paid by credit card.

Hadi believes that the proportion of customers paying by credit card is now greater than 35%

(a) Test Hadi's belief at the 5% level of significance. State your hypotheses clearly. (5)

For a random sample of 20 customers,

(b) show that 11 lies less than 2 standard deviations above the mean number of customers paying by credit card.

You may assume that 35% is the true proportion of customers who pay by credit card.

(4)

(9) XNB (20,0.35)	7+2(2(3) = 11.26.
0.05	
Ho: p=0-35	11-26 €> 11
H,: p>0.35.	
p(x > 11) = 1-p(x < 10) = 1-0.948	58
- 0.6532x	
p(x>,12)=1-p(x611)=1-0.98	04
=0.0196	
(F = X > 12)	
It doesn't fall in CR.	
: Hadi's Belief isn't	
supported	
11	
(b) XNB (20,0.35)	
mean = np = 7.	
Variance = np(1-p)	
= 7(1-0.35)	
= 4.55	N. Control of the Con
S.D: \4.55 = 2.13	

10

5. The continuous random variable X is uniformly distributed over the interval [a, b] where 0 < a < b

Given that $P(X < b - 2a) = \frac{1}{3}$

(a) (i) show that $E(X) = \frac{5a}{2}$

(3)

(ii) find P(X > b - 4a)

(1)

The continuous random variable Y is uniformly distributed over the interval [3, c] where c > 3

Given that Var(Y) = 3c - 9, find

(b) (i) the value of c

(3)

(ii) P(2Y - 7 < 20 - Y)

(3)

(iii) $E(Y^2)$

(3)

ai) t(x)= 9+6	36-99=6-9.
2	26=89
	b = 49
y sa	
9	ii) p(x > b-49).
mman m	49-6-49 = -6
9 b-la 5(49)	16-9/ 16-9.
/	
b-29-9 x 1 = 1	p(x>6-49)
6-9 3	
	= p(x>0)=1
$\frac{3-39}{6-9} = \frac{1}{3}$.	
6-9 5.	
9+49=59 (2)-	

2

Question	5	continued

bi)	YNU[3,67.	
,		

$$= \frac{((-3)^2}{12} = 3(-9)$$

$$((-3)^2 = 36(-108)$$

$$(((-3) = 3((-3)).$$

NIV

$$V(Y(Y)) = E(Y^2) - (E(Y))^2$$

 $3(39) - 9 = E(Y^2) - (\frac{39+3}{2})^2$
 $E(Y^2) = 549$

Leave

6. (i) (a) State the conditions under which the Poisson distribution may be used as an approximation to the binomial distribution.

(1)

A factory produces tyres for bicycles and 0.25% of the tyres produced are defective.

A company orders 3000 tyres from the factory.

(b) Find, using a Poisson approximation, the probability that there are more than 7 defective tyres in the company's order.

(3)

- (ii) At the company 40% of employees are known to cycle to work. A random sample of 150 employees is taken. The random variable *C* represents the number of employees in the sample who cycle to work.
 - (a) Describe a suitable sampling frame that can be used to take this sample.

(1)

(b) Explain what you understand by the sampling distribution of C

(1)

Louis uses a normal approximation to calculate the probability that at most α employees in the sample cycle to work. He forgets to use a continuity correction and obtains the incorrect probability 0.0668

Find, showing all stages of your working,

(c) the value of α

(4)

(d) the correct probability.

(2)

ia) n is large and pis	iig) A list of all the employees
7NB (3000,0.0025).	b) Probability distribution of the no. of employers that yele to work.
xn Po (7.5)	(c) C NB (150,0.4) P(C G d) =0.0668.
P(X)7)=1-p(XE7) 1-0.5246 =0.4754.	np= (50× 0.4 =60

Phys	icsAr	ndMat	hsTu	tor.con
ı iiyə		Idiviat	11314	

Question 6 continued

CNN (60,36)

$$\frac{\chi - 60}{6} = -1.5$$

Leave

7. The continuous random variable X has probability density function

$$f(x) = \begin{cases} c(x+3) & -3 \leqslant x < 0 \\ \frac{5}{36}(3-x) & 0 \leqslant x \leqslant 3 \\ 0 & \text{otherwise} \end{cases}$$

where c is a positive constant.

- (a) Show that $c = \frac{1}{12}$
- (b) (i) Sketch the probability density function.
 - (ii) Explain why the mode of X = 0 (3)
- (c) Find the cumulative distribution function of X, for all values of x (4)
- (d) Find, to 3 significant figures, the value of d such that $P(X > d \mid X > 0) = \frac{2}{5}$ (4)

c J = x+3. du	$\frac{9}{2} + \frac{5}{8} = 1$
$=\left(\left[\frac{x^2}{2}+3x\right]^2\right)$	9 c = 3 ·
$-((09/2)=\frac{9}{2}$	C = 1 12
$\frac{5}{36}\int_0^3 3-x \cdot cm$	bi)
5 (32-x2)3	4
$\frac{5}{36}\left(\frac{9}{2}-0\right)=\frac{5}{8}$	-3 3
36 8	occurs when x=6 so mode is o

Question 7 continued

(1) Integrate. July to da	p(x>0) => 1 x 3 x 5 = 5/8
$= \begin{bmatrix} 1 & x^{2} + 1 & x \end{bmatrix}^{x}$ $= \begin{bmatrix} 24 & 4 \end{bmatrix} \times \begin{bmatrix} 3 & 1 & 1 \\ 2 & 4 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 1 & 1 \\ 2 & 4 & 4 \end{bmatrix}$	1-F(d) = 2 78 1-F(d) = 45 × 78.
= 1 x ² +1 x +3 24 4 8	1- F(d) = 1/4.
$F(0) = 3$. 8 $\sqrt{x} = 5$ $\sqrt{2} = 3$ $\sqrt{3} = 4$ $\sqrt{3} = 4$	$(-(5/12d - 5/72d^2 + 3/8) = 1/4$ $1 - 5/12d + 5/72d^2 - 3/8 - 1/4 = 0.$ $5/72d^2 - 5/12d + 3/8 = 0$
$-\left(\frac{5}{12}x-\frac{5}{72}x^2\right)^{4}+F(0)$	d=1.10 V d=4.897 ×
$= \frac{5}{12} \times \frac{-5}{72} \times ^2 + 3$	d = 1.10
$F(\chi) = \begin{cases} 0 & \chi < -3 \\ \frac{1}{24} \chi^2 + \frac{1}{4} \chi^4 + \frac{3}{8} - 3 \leq \frac{5}{12} \chi^2 + \frac{3}{8} \end{cases}$	x < D 0 < X < 3 x > 3.
$\frac{p(x)dn x > 6) = 2}{p(x) dn x > 6}$	

Leave blank